Hypervalent Molecules: 1

Examples of molecules with three centre four electron bonds

And their representation within the covalent bond classification

XeF_2 – an example of a 3c-4e bond

Xe uses its 5s and three 5p orbitals for bonding

The molecule is linear

The Xe 5p $_{\sigma}$ orbital and two F 2p $_{\sigma}$ orbitals form a 3 centre bond

The inphase combination of the two F $2p_{\sigma}$ orbitals are nonbonding

Occupancy of these two orbitals results in a build up of charge on the fluorines

The equivalent Lewis formulation is given below

Xe contributes 2 electrons to the bonding and retains its octet. The XeF bond order is ½.

3c–4e Interactions

Method of Writing Formula of Covalent Molecules that contain 3 center - 4 electron bonds

This may be condensed to $ML_{I}(L_{I})^{H}X_{x}(X_{x})^{H}Z_{z}(Z_{z})^{H}$

Element M

Number I of L ligands in 2c-2e bonds Number I^H of L^H ligands in 3c+ 4e bonds Number x of X ligands in 2c-2e bonds Number x^H of X^H ligands in ⁷3c-4e, bonds Number z of Z ligands in 2c-2e bonds Number z^H of Z^H ligands in 3c- 4e bonds $ML_{2}X_{2}Z_{7}H_{1+x+7}$

The general formula being

 $ML_{I}X_{x}H_{h}$

H indicates a hypervalent interaction h is the number of hypervalent interactions

Counting using the general formulae

	Х ^н –м–Х ^н	X ^H –M–L ^H	L ^H -M-L ^H	L ^H –M–Z ^H
number of electrons contributed to the central atom	0	1	2	0
contribution to the valence of the central atom	2	1	0	2

Class: $ML_{I}(L_{I})^{H}X_{x}(X_{x})^{H}Z_{z}(Z_{z})^{H}$ or $ML_{I}X_{x}Z_{z}H_{h}$

Electron number(EN) = $nb + 2(I + x) + (I + x)^{H}$ or = m + 2I + x - 2h

Valence number (VN) = $(x + x^{H}) + 2(z + z^{H})$ or = x + 2z

Ligand bond number (LBN) = $(x + 1 + z) + (x + 1 + z)^{H}$ or = 1 + x + z

m = the number of electrons in the valency shell of the element nb = number of nonbonding electrons on M = m - VN

The use of the superscript ^H as in L^H, X^H and Z^H indicates the bond is hypervalent (3c-4e)

H is not to be confused with H for hydrogen

Non-metal fluoride examples of $(X_2)^H$ 3c-4e bonds

The 3c-4e bonds are linear being formed by a p orbital which favours linear overlap. They are longer than the 2c-2e bonds having a bond order of ½ rather than 1.

Examples of (LX)^H 3c-4e bonds

.

Examples of $(L_2)^H$ 3c-4e bonds

 $AIH_{3}(NH_{3})_{2}^{H}$ $InCl_{3}(PMe_{3})_{2}^{H}$ VN = 3 EN = 8 VN = 4 EN = 8

3c-4e bonds with first and second period elements as the central atom

Most examples of 3c-4e bonds are from the 3^{rd} period and below. However the classic example from the first period is the bifluoride ion, $[HF_2]^-$.

Some more exotic examples with B and C are shown below

