Hypervalent Molecules: 1

Examples of molecules with three centre four electron bonds

And their representation within the covalent bond classification

XeF_{2} - an example of a $3 \mathrm{c}-4 \mathrm{e}$ bond

Xe uses its 5 s and three 5 p orbitals for bonding
The molecule is linear
The Xe $5 p_{\sigma}$ orbital and two $\mathrm{F} 2 \mathrm{p}_{\sigma}$ orbitals form a 3 centre bond
The inphase combination of the two $F 2 p_{\sigma}$ orbitals are nonbonding
Occupancy of these two orbitals results in a build up of charge on the fluorines

The equivalent Lewis formulation is given below

$$
\mathrm{F}-\mathrm{Xe}^{+} \mathrm{F}^{-} \longleftrightarrow \mathrm{F}^{-} \mathrm{Xe}^{+} \longrightarrow \mathrm{F}
$$

Xe contributes 2 electrons to the bonding and retains its octet. The XeF bond order is $1 / 2$.

3c-4e Interactions

Method of Writing Formula of Covalent Molecules that contain

 3 center - 4 electron bonds| $\mathrm{ML}_{1}\left(L_{l}\right)^{\mathrm{H}} \mathrm{X}_{\mathrm{x}}\left(\mathrm{X}_{x}\right)^{\mathrm{H}} \mathrm{Z}_{z}\left(\mathrm{Z}_{z}\right)^{\mathrm{H}}$ | This may be condensed to |
| :---: | :---: |
| $\cdots, 1011$ | |
| Element M | $\mathrm{ML}_{21} \mathrm{X}_{2 \mathrm{x}} \mathrm{Z}_{2 z} \mathrm{H}_{1+\mathrm{x}+\mathrm{z}}$ |
| Number l'of L ligands in 2 c'2e bonds | |
| Number ${ }^{\mathrm{H}}$ of L^{H} ligańds , ín 3 c , 4 e b bonds | The general formula being |
| Number x of X ligands in ${ }^{\text {n }} \mathrm{2c}$-2'2e borids | |
| Number X^{H} of X^{H} ligands in ${ }^{\prime} \mathrm{3}$ c-4e,bonds | $\mathrm{ML}_{1} \mathrm{X}_{\mathrm{x}} \mathrm{H}_{\mathrm{h}}$ |

Number z^{H} of Z^{H} ligands in $3 \mathrm{c}-\dot{4} \mathrm{e}$ bonds
H indicates a hypervalent interaction h is the number of hypervalent interactions

Counting using the general formulae

	$X^{H}-M-X^{H}$	$\mathbf{X}^{\mathbf{H}}-\mathbf{M}-L^{\text {H }}$	$L^{H}-\mathbf{M}-L^{\text {H }}$	$L^{H}-M-Z^{\text {H }}$
number of electrons contributed to the central atom	0	1	2	0
contribution to the valence of the central atom	2	1	0	2
Class: $\mathrm{ML}_{\mathrm{l}}\left(\mathrm{L}_{\mathrm{l}}\right)^{H} \mathrm{X}_{\mathrm{x}}\left(\mathrm{X}_{\mathrm{x}}\right)^{\mathrm{H}} \mathrm{Z}_{\mathrm{z}}\left(\mathrm{Z}_{\mathrm{z}}\right)^{\mathrm{H}}$ or $\mathrm{ML}_{1} \mathrm{X}_{\mathrm{x}} \mathrm{Z}_{\mathrm{z}} H_{\mathrm{h}}$				

Electron number(EN $)=n b+2(I+x)+(I+x)^{H}$ or $=m+2 l+x-2 h$
Valence number $(V N)=\left(x+x^{H}\right)+2\left(z+z^{H}\right)$ or $=x+2 z$
Ligand bond number $($ LBN $)=(x+I+z)+(x+I+z)^{H}$ or $=I+x+z$
$m=$ the number of electrons in the valency shell of the element $\mathrm{nb}=$ number of nonbonding electrons on $\mathrm{M}=\mathrm{m}-\mathrm{VN}$

The use of the superscript ${ }^{H}$ as in L^{H}, X^{H} and Z^{H} indicates the bond is hypervalent ($3 c-4 e$)
H is not to be confused with H for hydrogen

Non-metal fluoride examples of $\left(\mathrm{X}_{2}\right)^{\mathrm{H}} 3 \mathrm{c}-4 \mathrm{e}$ bonds

F----Xe-----F

$\mathrm{XeF}_{2}{ }^{\mathrm{H}}$
$\mathrm{VN}=2, \mathrm{EN}=8$

$\mathrm{XeF}_{4}{ }^{\mathrm{H}}$
$V N=4, E N=8$

$\mathrm{ClFF}_{2}{ }^{\mathrm{H}}$
$\mathrm{VN}=3, \mathrm{EN}=8$

$\mathrm{ClFF}_{4}{ }^{\mathrm{H}}$
$\mathrm{VN}=5, \mathrm{EN}=8$

$\mathrm{SF}_{2} \mathrm{~F}_{2}{ }^{\mathrm{H}}$
$V N=4, E N=8$

$$
\mathrm{SF}_{2} \mathrm{~F}_{4}{ }^{\mathrm{H}}
$$

$$
V N=6, E N=8
$$

$\mathrm{VN}=6, \mathrm{EN}=8$

$$
\begin{aligned}
& \mathrm{PF}_{3} \mathrm{~F}_{2} \mathrm{H} \\
& \mathrm{VN}=5, \mathrm{EN}=8
\end{aligned}
$$

The $3 \mathrm{c}-4 \mathrm{e}$ bonds are linear being formed by a p orbital which favours linear overlap. They are longer than the $2 \mathrm{c}-2 \mathrm{e}$ bonds having a bond order of $1 / 2$ rather than 1 .

Examples of $(L X)^{H} 3 c-4 e$ bonds

$\mathrm{SiF}_{3} \mathrm{FH}^{\mathrm{H}}\left(\mathrm{NH}_{3}\right)^{\mathrm{H}}$
$\mathrm{VN}=4 \mathrm{EN}=8$

$\mathrm{SnBr}_{3} \mathrm{Br}^{\mathrm{H}}\left(\mathrm{AsPh}_{3}\right)^{\mathrm{H}}$
$\mathrm{VN}=4 \mathrm{EN}=8$

Examples of $\left(\mathrm{L}_{2}\right)^{\mathrm{H}} 3 \mathrm{c}-4 \mathrm{e}$ bonds

$$
\begin{aligned}
& \mathrm{AlH}_{3}\left(\mathrm{NH}_{3}\right)_{2}{ }^{\mathrm{H}} \\
& \mathrm{VN}=3 \mathrm{EN}=8
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{InCl}\left(\mathrm{PMe}_{3}\right)_{2}{ }^{\mathrm{H}} \\
& \mathrm{VN}=4 \mathrm{EN}=8
\end{aligned}
$$

$3 c-4 e$ bonds with first and second period elements as the central atom

Most examples of $3 \mathrm{c}-4 \mathrm{e}$ bonds are from the $3^{\text {rd }}$ period and below. However the classic example from the first period is the bifluoride ion, $\left[\mathrm{HF}_{2}\right]^{-}$.

Some more exotic examples with B and C are shown below

